Осторожность: Не могу, поскольку я не знаю точно, что там есть неверные правила — поэтому я не могу указать вам на одно из них Все же я могу вообразить себе следующую сцену. Следуя правилам, вы выводите теорему — скажем, x. Между тем, я, также следуя правилам, вывожу другую теорему — и предположим, у меня вышло ~x. Можете ли вы представить себе такое?
Неосторожность: Хорошо — представим себе, что такое произошло. Чем это вам помешает? Скажем, мы обе играем с системой MIU; у меня получилась теорема x, а у вас — xU. Можете вы представить такое?
Осторожность: Разумеется: и MI, и MIU — теоремы.
Неосторожность: И вас это не смущает?
Осторожность: Конечно, нет. Ваш пример просто смешон, поскольку теоремы MI и MIU не ПРОТИВОРЕЧАТ одна другой, в то время как строчки x и ~x в исчислении высказываний противоречивы.
Неосторожность: Хорошо — если только вы решили интерпретировать «~» как «не». Но что заставляет вас думать, что «~» должно быть интерпретировано именно так?
Осторожность: Сами правила. Их них видно, что единственной возможной интерпретацией для «~» является «не», единственной возможной интерпретацией для «Λ» — «и» и так далее.
Неосторожность: Иными словами, вы считаете, что правила описывают значения слов?
Осторожность: Именно так.
Неосторожность: И, несмотря на это, вы все еще цепляетесь за мысль, что обе x и ~x могут быть теоремами? Почему бы вам заодно не предположить, что ежи — это жабы, или что 1 равняется 2, или что луна сделана из зеленого сыра? Я, со своей стороны, не хочу даже и думать, что основные ингредиенты моего мыслительного процесса могут быть ошибочными — иначе мне пришлось бы усомниться в собственном анализе всего этого вопроса, и я бы совершенно запуталась.
Осторожность: Ваши аргументы притянуты за уши. Все же мне хотелось бы увидеть ДОКАЗАТЕЛЬСТВО того, что все теоремы истинны, или того, что x и ~x не могут быть теоремами одновременно.
Неосторожность: Желаете доказательства? По-моему, вы более хотите убедиться в непротиворечивости исчисления высказываний, чем в вашем собственном душевном здоровье. Любое мыслимое доказательство включало бы более сложные операции, чем те, что возможны в самом исчислении высказываний. И что бы это доказало? С вашим желанием доказать непротиворечивость исчисления высказываний вы напоминаете мне человека, который захотел выучить русский и потребовал для этого словарь, определяющий все простые слова через более сложные…
Этот небольшой спор показывает, как трудно использовать логику и рассуждеения для защиты самой логики. В какой-то момент вы упираетесь в стенку, и вам ничего не остается, кроме как выкрикивать: «Я знаю, что я прав!» Мы снова столкнулись с вопросом, который Льюис Кэрролл так ярко проиллюстрировал в своем Диалоге: продолжать защищать схему собственного мышления до бесконечности невозможно. Рано или поздно наступает момент, когда приходится в нее просто поверить.
Систему рассуждений можно сравнить с яйцом. Его внутренность защищена скорлупой — но чтобы куда-то это яйцо послать, вы на нее не надеетесь. Вы упаковываете яйцо в контейнер, выбранный в соответствии с трудностью предстоящего путешествия. Если вы хотите действовать более осторожно, можете даже уложить яйцо в несколько вложенных одна в другую коробок. Однако сколько бы коробок вы не использовали, всегда можно вообразить себе, что происходит катастрофа и яйцо все же разбивается. Точно так же мы никогда не можем дать абсолютное, конечное доказательство того, что доказательства какой-либо системы истинны. Разумеется, мы можем представить доказательство доказательства, или доказательство доказательства доказательства — но нам всегда приходится принимать на веру состоятельность самой внешней из систем. Всегда возможно вообразить, что некая тонкость разрушит каждое из наших доказательств — и когда мы дойдем до «дна», то «доказанный» результат окажется вовсе не таким уж истинным. Это, однако, не означает, что математики и физики постоянно беспокоятся о том, что все здание математики может быть ложным. С другой стороны, когда люди сталкиваются с неординарными, или слишком длинными, или полученными на компьютере доказательствами, они начинают думать над тем, что же имеется в виду под этим почти святым понятием «доказательства».
Отличным упражнением для вас, читатель, было бы сейчас снова вернуться к Диалогу Кэрролла и попытаться закодировать весь спор с самого начала, используя нашу нотацию.
Ахилл: Если у вас имеется <<A Λ B>э Z> и <A Λ B>, то у вас наверняка есть Z.
Черепаха: Вы имеете в виду, что <<<<A Λ B> эZ>Λ<A Λ B>> эZ>, не так ли?
(Подсказка: то, что Ахилл считает правилом вывода, Черепаха туг же превращает в простую строчку системы. Используя только буквы А, В и Z, вы получите непрерывно удлиняющуюся рекурсивную структуру.)
Выводя теоремы исчисления высказываний, мы обычно вскоре изобретаем различные сокращения пути, строго говоря, не являющиеся частью системы. Например, если бы в какой-то момент нам понадобилась бы строчка <Q V ~ Q>, и при этом у нас уже имелась бы ранее выведенная строчка <P V ~ P>, многие из нас действовали бы так, словно строчка <Q V ~ Q> уже выведена, так как мы знаем, что ее вывод в точности соответствует выводу <P V ~ P>. Выведенная теорема используется здесь как «схема теорем» — форма для их отливки. Этот прием вполне допустим, поскольку он помогает нам выводить новые теоремы — но сам по себе он не является правилом исчисления высказываний. Скорее это вторичное, выведенное правило, часть нашего знания о системе. Конечно, то, что это правило всегда оставляет нас в области теорем, еще надо доказать — но тем не менее, это правило отличается от дериваций внутри системы. Оно является доказательством в ординарном, интуитивном значении этого слова — цепочка рассуждений, проведенная по способу I. Теория об исчислении высказываний является «мета-теорией», и ее результаты можно назвать «мета-теоремами» — Теоремами о теоремах. (Обратите внимание на заглавную букву в выражении «Теоремы о теоремах». Это — следствие нашего соглашения: мета-теоремы являются Теоремами (доказанными результатами), касающимися теорем (выводимые строчки).)
В исчислении высказываний можно найти множество других мета-теорем, или вторичных правил вывода. Вот, например, вторичное правило Де Моргана:
<~ x V ~ y> и ~<x Λ у> взаимозаменяемы.
Если бы это было правилом системы, это значительно ускорило бы многие деривации. А что, если мы докажем, что оно верно — достаточно ли этого, чтобы использовать его в качестве еще одного правила вывода?
У нас нет причин сомневаться в истинности этого выведенного правила. Однако как только вы начинаете использовать выведенные правила в процедуре исчисления высказываний, формальность системы теряется, поскольку эти правила выведены неформально — вне системы. Формальные системы были предложены, как способ проследить за каждым шагом доказательства внутри единой строгой системы, чтобы каждый математик мог механически проверить работу своих коллег. Однако если вы готовы при малейшей возможности выскочить за рамки системы, то зачем ее вообще было создавать? Как видите, у подобных правил есть и отрицательная сторона.
С другой стороны, возможен и иной выход. Почему бы нам не формализовать также и мета-теорию? Таким образом, выведенные правила (мета-теоремы) станут частью большей формальной системы и вывод новых, упрощающих деривацию теорем формализованной мета-теории станет законным. Эти теоремы затем могут быть использованы, чтобы облегчить вывод теорем исчисления высказываний. Это интересная идея, но как только мы начинаем ее обдумывать, то тут же сталкиваемся с мета-мета-теориями и так далее. Ясно, что сколько бы уровней мы не формализовали, всегда найдется кто-нибудь, кто захочет вывести упрощающие правила на высшем уровне.